返回总库    

学科分类

跨媒体网络事件检测与跟踪研究

作者: 张承德
出版日期:2018-01-01
浏览次数:2次
简介: 最近十年,社交网络和网络视频网站的普及和快速发展,使得网络视频的数量以指数级增长。对于海量的搜索结果,用户需要点击查看完大量相关视频后,自己再加以整理方可了解整个话题和主要事件。用户不仅要耗费大量时间来查找搜索结果,而且他们很难找到他们真正想要的搜索结果,更不用说完全陌生的话题了。因此,现在的搜索引擎并不能帮助用户抓住主要事件然后从整体上了解整个话题。这对研究如何有效挖掘主要事件提出了迫切需求。然而,少量和嘈杂的文本信息和质量较低并易受编辑的视觉信息对基于初始关键字和视觉特征的事件挖掘提出了新的挑战。随着网络犯罪、网络拼车等对多媒体信息检索的需求,多媒体融合信息检索成为新的趋势。
关键词: 情报检索  跨媒体  网络事件  

数字文献资源高维聚合模型研究

作者: 牛奉高
出版日期:2017-01-01
浏览次数:76次
简介: 针对文本挖掘和信息检索中的文本或文献聚类与分类等问题,学术界基于VSM(向量空间模型)主要有两方面的研究:一是文献表示模型;二是算法。然而,传统的算法对高维稀疏的向量聚类存在不足,一些新的算法也不尽完美,更主要的是聚类算法的效果与数据本身的特征以及信息提取和表示密切相关,特别是在信息有限的情况下,聚类算法的优势也不能得到完美发挥。相比之下,信息的挖掘、提取和文献向量表示就尤为重要。如果只有关键词,文献的表示向量相比一般文本表示就表现得更加稀疏。面对这种情形,聚类算法即使是“巧妇”也“难为无米之炊”,因此,本书的重点突破是文献主题语义信息的提取、度量和文献高维向量的表示方法。基于以上问题和现象,本书以数字文献资源为对象,本着在信息资源聚合中减少对背景知识的依赖,便于推广应用的宗旨,提出了基于文献集本身或者相关领域的共现信息而实现文献聚合的共现潜在语义向量空间模型,而且通过实验证实基于CLSVSM的文献聚类表现比基于VSM和GVSM(广义向量空间模型)显著地好。本书还讨论了模型的性质以及通过数学和统计方法降低算法复杂度、提高聚类效率的多种思路,为模型在信息检索和搜索领域的广泛应用提供了一般范式。
关键词: 文献计量学  数字文献资源  

版权所有:中国社会科学出版社 地址:北京西城区鼓楼西大街甲158号 邮编:100720

京ICP备05032912号-4